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Abstract

Epidemiological studies indicate that adequate dietary folate is protective against colon cancer, although mechanisms remain largely

elusive. We investigated the effects of genetic disruptions of folate transport and metabolism and of dietary folate deficiency in a mouse

model of colon cancer, the Apcmin/+ mouse. Apcmin/+ mice with heterozygous knockout of the gene for reduced folate carrier 1 (Rfc1+/�)

developed significantly fewer adenomas compared to Rfc1+/+Apcmin/+ mice [30.3F4.6 vs. 60.4F9.4 on a control diet (CD) and 42.6F4.4 vs.

55.8F7.6 on a folate-deficient diet, respectively]. Rfc1+/�Apcmin/+ mice also carried a lower tumor load, an indicator of tumor size as well as

of tumor number. In contrast, there were no differences in adenoma formation between Apcmin/+ mice carrying a knockout allele for

methionine synthase (Mtr+/�), an enzyme that catalyzes folate-dependent homocysteine remethylation, andMtr+/+Apcmin/+ mice. However, in

bothMtr groups of mice, dietary folate deficiency significantly increased adenoma number (from 32.3F3.8 on a CD to 48.1F4.2 on a folate-

deficient diet), increased plasma homocysteine, decreased global DNA methylation in preneoplastic intestines and increased apoptosis in

tissues. There were no genotype-associated differences in these parameters in the Rfc1 group, suggesting that the protection conferred by

Rfc1 deficiency is carried out through a different mechanism. In conclusion, genetic and nutritional disturbances in folate metabolism can

have distinct influences on tumorigenesis in Apcmin/+ mice; altered levels of homocysteine, global DNA methylation and apoptosis may

contribute mechanistically to dietary influence.

D 2007 Elsevier Inc. All rights reserved.
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1. Introduction

Folate derivatives participate in several important cellular

processes, including amino acid interconversions and DNA

methylation, synthesis and repair. Epidemiological studies

have demonstrated that dietary folate status and the activity

of folate-dependent enzymes can alter the risk of certain

cancers. Specifically, several studies have shown that high
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folate intake is inversely correlated with the risk of

developing colorectal adenomas and carcinomas and that

an activity-reducing polymorphism in an enzyme central to

folate metabolism [methylenetetrahydrofolate reductase

(MTHFR)] has a protective effect against colon cancer

incidence when adequate folate status is maintained [1–4].

The mechanisms by which folate modulates cancer risk are

not completely understood, although several hypotheses

have been proposed.

Folate is required for the generation of S-adenosylme-

thionine (SAM), an important methyl donor involved in the

DNA methyltransferase (Dnmt)-catalyzed methylation of

DNA, a means of transcriptional regulation. Folate defi-
chemistry 18 (2007) 305–312



A.K. Lawrance et al. / Journal of Nutritional Biochemistry 18 (2007) 305–312306
ciency may cause global DNA hypomethylation (potentially

permitting oncogene expression) or aberrant methylation

patterns, such as promoter hypermethylation (preventing the

expression of tumor-suppressor genes). For example, a

severely methyl-deficient diet was shown to induce DNA

hypomethylation and to increase mRNA levels of the c-myc

and c-fos proto-oncogenes in the rat liver [5]. In contrast,

another study using a rat colon cancer model did not

observe any changes in DNA methylation during folate

deficiency, although the number and size of colonic aberrant

crypt foci (ACF) were reduced [6].

The de novo synthesis of nucleotides is also dependent

on the availability of folate. 10-FormylTHF contributes

one-carbon units for the generation of purines, and 5,

10-methyleneTHF provides the methyl group for the

methylation of dUMP to dTMP. In vitro studies suggest

that the latter reaction is critical since a high dUTP/dTTP

ratio may lead to the misincorporation of uracil into DNA

and ultimately to DNA double-strand breaks, genomic

instability and DNA fragmentation [7–12]. Folate deficien-

cy therefore leads to uracil misincorporation and DNA

damage, as well as to a reduced pool of nucleotides for

DNA synthesis and repair.

Disturbances of folate metabolism can also adversely

affect the rate of apoptosis in animal tissues [10,13]. This

may be a result of methylation or nucleotide pool changes (as

discussed above), an accumulation of cytotoxic homocys-

teine or a deficiency of choline (the precursor of betaine), an

alternate carbon donor for homocysteine remethylation to

methionine. Enhanced apoptosis can be beneficial in

eliminating tumorigenic cells, thus inhibiting the formation

— or restricting the size — of tumors. However, it may also

induce a chronic increase in cell turnover rate, decreased

repair time and increased DNA damage, with a selection

pressure that favors cells with transformation potential [14].

Mouse models provide an opportunity to explore the

etiology of complex diseases. An established model for

intestinal neoplasia, the Apcmin/+ mouse, develops multiple

small intestinal adenomas within a few months of age [15].

These mice harbor a germline mutation in the tumor

suppressor Apc, a gene shown to be frequently mutated in

sporadic and hereditary forms of colon cancer in humans

[16]. The effect of dietary folate has been investigated in

these mice, with variable outcomes that might be dependent

on the timing and duration of intervention. In one study,

there was no difference in total adenoma number between

folate-supplemented and folate-deficient mice, although

there was a decrease in the number of ileal adenomas in

the folate-supplemented group at 3 months and a decrease in

ileal adenomas in the folate-deficient group at 6 months

[17]. In our previous work with Apcmin/+ mice, we

concluded that folate deficiency exerts different effects

depending upon the transformation state of the cell. When

folate intervention occurs at an early stage, it may promote

tumorigenesis; if it occurs during later stages of transfor-

mation, it may inhibit tumor growth [18].
Apcmin/+ mice have also been used to investigate genetic

modifiers of cancer. In multiple reports, Dnmt deficiency

significantly reduced adenoma multiplicity [19–21], where-

as Mlh- or Msh-null mutations increased adenoma number

dramatically [22,23]. In one study, a moderately folate-

deficient diet in Apcmin/+ mice carrying a Dnmt1 mutation

did not alter global DNA methylation or promoter-specific

methylation of the E-cadherin gene [21]. In another report,

Dnmt deficiency was associated with a decrease in the

methylation of CpG islands of Itga4,Mgmt and Timp3, with

a decrease in tumor number [20].

Despite the critical role of folate metabolism in tumor-

igenesis, crosses between mouse models of folate transport

and metabolism and Apcmin/+ mice have not yet been

reported. We therefore examined the influence of genetic

and nutritional disturbances in folate metabolism on

tumorigenicity in Apcmin/+ mice by crossing them with

mice harboring a knockout allele in one of two key genes in

folate transport and metabolism and by administering

control and folate-deficient diets to these animals. The

mouse models were heterozygous for the disruption of the

gene for reduced folate carrier 1 (Rfc1) or for the gene

encoding methionine synthase (MTR). Rfc1 transports the

predominant plasma folate, 5-methylTHF, into cells. MTR

transfers the methyl group from 5-methylTHF to homo-

cysteine to generate methionine, which is subsequently

converted to SAM. We investigated the impact of these

metabolic disruptions on tumor multiplicity and size in

Apcmin/+ mice, in addition to cellular processes that might

contribute to tumorigenesis, specifically global DNA

methylation and intestinal apoptosis.
2. Materials and methods

2.1. Mice and dietary intervention

Animal experimentation was approved by the Montreal

Children’s Hospital Animal Care Committee, in accordance

with the guidelines of the Canadian Council on Animal Care.

The generation and genotyping of Rfc1+/� and Mtr+/�

were performed as described previously [24,25]. Rfc1

mice were established on SWV/Fnn background [24]. Mtr

mice were established on a mixed Black Swiss and 129SV

background [25]. Male Apcmin/+ mice (C57BL/6J back-

ground) were obtained from The Jackson Laboratory (Bar

Harbor, ME) and bred with female Rfc1+/� or Mtr+/� mice.

Offspring were weaned at 3–3.5 weeks and fed amino-acid-

defined diets (Harlan Teklad, Madison WI) until they were

10 weeks old. These diets complied with the recommenda-

tions of the American Institute of Nutrition guidelines for

rodents [26]. The mice were randomly assigned to receive

either a control diet (CD) containing 2 mg folic acid/kg diet

(recommended amount) or a folic-acid-deficient diet

(FADD) containing 0.2–0.3 mg folic acid/kg diet. All diets

were supplemented with 1% succinylsulfanthiozole to

inhibit folic acid synthesis by intestinal flora.



Fig. 1. Effect of Rfc1 genotype and dietary folate on (A) adenoma number

and (B) adenoma load in Rfc+/+Apcmin/+ (n) and Rfc+/�Apcmin/+ (5) mice

on CD or on FADD. Values represent meanFS.E.M. n =number of mice.
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All mice were genotyped for Pla2g2a, the candidate

gene for Mom1, an established modifier of the Min

phenotype that can affect adenoma formation, using

described procedures [27]. This was performed to ensure

that the four experimental groups for each mouse strain were

of the same Pla2g2a genotype. There are two possible

alleles:Mom1R (wild-type Pla2g2a), which confers Apcmin/+

mice resistance to adenoma formation, and Mom1S (mutant

Pla2g2a), which sensitizes to adenoma formation. Every

mouse in the Rfc1 group was Mom1S/R (the Apcmin/+ strain

is Mom1S/S and the Rfc1 strain is Mom1R/R, as genotyped in

our laboratory). Mtr mice were either Mom1S/S or Mom1S/R

due to their mixed background (genotyping of the parental

strains in our laboratory revealed that the Black Swiss strain

is Mom1R and the 129SV is Mom1S). Since Apcmin/+

mice areMom1S/S, we includedMtr mice that wereMom1S/S

for our experiments. For this reason, one group (Mtr+/�

FADD) was left with only three mice, and further at-

tempts at breeding mice of the same Mom1 genotype were

not successful.

2.2. Adenoma scoring

The number and size of small intestinal adenoma were

determined as in our previous reports [18,21]. Mice were

sacrificed by asphyxiation. Blood was obtained by cardiac

puncture for plasma homocysteine evaluation. Intestines

were removed, opened longitudinally and flushed with

phosphate-buffered saline. Selected adenomas and preneo-

plastic (normal) intestinal tissues were snap-frozen in liquid

nitrogen and stored at �708C. The remaining intestine was

placed flat between two pieces of filter paper and fixed in

10% formalin solution for at least 24 h. The intestine was

then stained with a 0.1% methylene blue solution and

assessed for adenoma number and size by two different

individuals blinded to genotype and diet using a dissecting

microscope and a micrometer. Adenoma load refers to the

sum of the areas of tumors for each mouse.

2.3. Total plasma homocysteine (tHcy) evaluation

Cardiac blood was collected in potassium–EDTA tubes

and centrifuged at 6000�g for 5 min at 48C to separate

plasma. Measurements were performed by high-perfor-

mance liquid chromatography, as described [28].

2.4. Methylation analysis

To assess the methylation of CCGG sites in preneoplastic

(normal) intestines, a thin-layer chromatography (TLC)

assay was performed as previously described [29]. Briefly,

5 Ag of RNA-free genomic DNA was treated with Msp1

(which digests both methylated and unmethylated CCGG

sequences). The DNA was then treated with calf intestinal

alkaline phosphatase, end-labeled with [32P]gdATP, hydro-

lyzed with nuclease P1, spotted on a cellulose TLC plate

and developed in isobutyric-acid–water–ammonium hy-

droxide (66:33:1). The images were quantified by a

phosphorimager. The amount of methylation was calculated
as the percentage of methylated cytosines/(methylated

cytosines+unmethylated cytosines).

2.5. Caspase-3/7 activity assay

Preneoplastic intestinal tissue was ground into powder in

liquid nitrogen and lysed in buffer (50 mmol/L potassium

phosphate, 0.3 mmol/L EDTA, pH 8.0). Total protein

concentration was determined using Bio-Rad Protein Assay

solution (Bio-Rad, Montreal, Canada). Caspase-Glo 3/7

Assay kit (Promega, Nepean, Canada) was used to measure

caspase-3/7 activities, according to the manufacturer’s

instructions. Two micrograms of total protein was used

per assay. Two different intestinal extracts from the same

mouse, each assayed in duplicate, were used to generate a

mean of four assays per mouse.

2.6. Statistical analysis

Two-factor analysis of variance (ANOVA) and indepen-

dent-sample t tests were performed using SPSS for

WINDOWS software, version 11.0. Pb.05 was considered

significant. All data are reported as meanFS.E.M.
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3. Results

3.1. Adenoma number and load in Apcmin/+ mice are

reduced by Rfc1 deficiency

Rfc1+/�Apcmin/+ mice developed fewer adenomas than did

Rfc1+/+Apcmin/+ mice (Fig. 1A; Pb.05, two-factor ANOVA).

On the control folate-repleted diet, Rfc1+/�Apcmin/+ mice had

50% fewer tumors than their wild-type Rfc1+/+Apcmin/+

counterparts (30.3F4.6 vs. 60.4F9.4). The values for the

folate-deficient diet were 42.6F4.4 versus 55.8F7.6. The

total area of the adenomas (expressed as adenoma load) was

also lower in Rfc1+/�Apcmin/+ mice than in Rfc1+/+Apcmin/+

mice (Fig. 1B; Pb.05, two-factor ANOVA). The load on CD

for Rfc1+/�Apcmin/+ and Rfc1+/+Apcmin/+ was 17.9F3.3 and

36.1F4.7 mm2; the load on the folate-deficient diet was

29.0F3.3 and 46.5F8.5 mm2, respectively.

Adenoma load was slightly but nonsignificantly increased

by FADD (Fig. 1B; P=.07, two-factor ANOVA). Since the

average adenoma size was also slightly but not significantly

increased (data not shown), it is likely that the increase in

load is attributable to an increase in adenoma size.

To examine the potential effects of gender, we repeated

each ANOVA with gender as a covariate; both number and

load remained significant for genotype (Rfc1+/+, 10 females,

13 males; Rfc1+/�, 12 females, 11 males).
Fig. 2. Effect of Mtr genotype and dietary folate on (A) adenoma number

and (B) adenoma load in Mtr+/+Apcmin/+ (n) and Mtr+/�Apcmin/+ (5) mice

on CD or on FADD. Values represent meanFS.E.M. n =number of mice.

Fig. 3. Effect of Rfc1 genotype and dietary folate on (A) tHcy, (B) intestinal

global DNA methylation and (C) intestinal caspase-3/7 activity in Rfc+/+

Apcmin/+ (n) and Rfc+/�Apcmin/+ (5) mice. Values represent meanFS.E.M.

n =number of mice.
3.2. Dietary folate deficiency increases adenoma number in

Mtr+/+Apcmin/+ and Mtr+/�Apcmin/+ mice

Mtr genotype did not significantly affect either adenoma

number or load (Fig. 2A and B). However, adenoma number

was increased in both genotype groups (Mtr+/+Apcmin/+ and

Mtr+/�Apcmin/+ mice) receiving FADD (Fig. 2A; Pb.05,

two-factor ANOVA), from an average of 32.3F3.8 on CD

to 48.1F4.2 on FADD. There was no significant dietary

influence on adenoma load (Fig. 2B). When analyses were

repeated with gender as a covariate, the significance of diet



Fig. 4. Effect of Mtr genotype and dietary folate on (A) tHcy, (B) intestinal

global DNA methylation and (C) intestinal caspase-3/7 activity in Mtr+/+

Apcmin/+ (n) and Mtr+/�Apcmin/+ (5) mice. Values represent meanFS.E.M.

n =number of mice.
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effect on adenoma number was retained (CD, 6 females, 16

males; FADD, 6 females, 5 males).

3.3. Dietary folate, but not Rfc1 or Mtr genotype, affects

tHcy, global DNA methylation and levels of apoptosis in

Mtr+/+Apcmin/+ and Mtr+/�Apcmin/+ mice

Homocysteine is a cytotoxic amino acid that is either

eliminated via transsulfuration or remethylated to form

methionine, using either 5-methylTHF or betaine as a

methyl donor. Since mice have been shown to develop

mild hyperhomocysteinemia in response to FADDs [30], we
measured tHcy to ensure the effectiveness of FADD and to

determine if hyperhomocysteinemia or its consequences

could contribute to observed decreases in adenoma number

or load. There was no influence of genotype on plasma

homocysteine in the two strains on either diet. In contrast,

the folate-deficient diet significantly increased homocys-

teine in Rfc1+/+Apcmin/+ and Rfc1+/�Apcmin/+ mice, as well

as in Mtr+/+Apcmin/+ and Mtr+/�Apcmin/+ mice, but the

increase was much more dramatic in the Mtr group of

Apcmin/+ mice, which demonstrated a threefold increase in

plasma homocysteine on FADD compared to the value on

CD; the increase due to diet in the Rfc1 group of Apcmin/+

mice was approximately 50% (Figs. 3A and 4A).

SAM is the methyl donor for Dnmt-catalyzed DNA

methylation, an important process in epigenetic gene

regulation. Increased levels of homocysteine will generate

SAH, an inhibitor of SAM-dependent methyltransferases. In

the Mtr group, which demonstrated a dramatic diet-

dependent increase in homocysteine, there was a concom-

itant decrease in DNA methylation in the preneoplastic

intestinal tissue (Fig. 4B). Rfc1 mice, which did not respond

as dramatically to FADD in terms of plasma tHcy, did not

exhibit any significant changes in global DNA methylation

in the intestine (Fig. 3B). There were no significant effects

of Mtr or Rfc1 genotype on methylation in the preneoplastic

intestinal DNA of these Apcmin/+ mice; this observation is

consistent with the absence of an effect of genotype on

homocysteine levels.

Since homocysteine has been reported to increase

apoptosis in some experimental systems, we also assessed

caspase-3/7 activities as a marker of apoptosis in preneo-

plastic intestinal tissues. In Mtr+/+Apcmin/+ and Mtr+/�

Apcmin/+ mice, caspase-3/7 activities were increased on

FADD (Fig. 4C), indicating an increased rate of apoptosis in

this tissue. Rfc1+/+Apcmin/+ and Rfc1+/�Apcmin/+ mice did

not exhibit any significant effects of diet on caspase

activities (Fig. 3C). As mentioned for methylation, there

was no effect of genotype on apoptosis; this is also

consistent with the absence of a genotype effect on plasma

homocysteine.

Basal levels of intestinal apoptosis on CD were different

between Rfc1 Apcmin/+ mice and Mtr Apcmin/+ mice, but this

could be attributable to strain differences; we tested

additional strains and obtained variable strain-dependent

levels of apoptosis (data not shown).
4. Discussion

This study demonstrates that both genetic and nutritional

disturbances in folate metabolism can influence adenoma

formation and growth in Apcmin/+ mice. Genetic disruption

of the Rfc1 gene reduced adenoma number and load in this

strain, whereas low dietary folate did not have a significant

impact. In contrast, dietary folate deficiency increased tumor

number in Mtr+/+Apcmin/+ and Mtr+/�Apcmin/+ mice, where-

as genetic mutation had little or no influence. Direct
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comparisons between the two mutant strains cannot be

made since they are on different genetic backgrounds.

Nonetheless, our work suggests that folate metabolism can

influence tumorigenesis in a multifactorial manner, depend-

ing on the genetic variation and nutritional status of the host.

This was underscored further by the fact that Rfc+/+Apcmin/+

mice, all of which carry a Mom1R allele, developed more

adenomas overall than the Mtr+/+Apcmin/+ group, which did

not. The genetic background of Rfc mice may contain

additional modifiers of the Min phenotype that can increase

adenoma number.

Rfc1 mice are on a uniform genetic background (SWV/

Fnn) [24], whereas Mtr mice are on a mixed background

(Black Swiss and 129SV) [25]. Since strong genetic deter-

minants of tumorigenesis may be less evident on a mixed

background, this factor may have contributed to the dramatic

effect of diet in Mtr+/+Apcmin/+ and Mtr+/�Apcmin/+ mice.

The genetic deficiency of Rfc1, a reduced folate

transporter, resulted in fewer adenomas with no concurrent

changes in plasma homocysteine, global DNA methylation

or intestinal cell apoptosis. Low dietary folate, administered

to rodents postnatally, has been examined for its role in

tumor formation in the Apcmin/+ mouse model, as well as in

other colon cancer models [18,21,31]. Here, we show that a

very early disruption, in the form of a genetic defect in

folate transport, inhibits adenoma formation in these mice,

although the mechanism remains speculative.

Plasma homocysteine in the Rfc1 strain was not influ-

enced by Rfc1 mutation and was only modestly affected by

low dietary folate (~50% increase on FADD). These

findings, which may relate to the background of the strain,

are consistent with those of a recent study, which showed

that these mice were refractory to folate deficiency with

respect to changes in the levels of SAM and SAH — other

biomarkers in the homocysteine/methylation cycle [32].

In adult mice, the intestinal expression of Rfc1 in Rfc1+/�

mice, based on reverse transcription polymerase chain

reaction, is lower than that of their wild-type littermates

(data not shown), and there are modest differences in

colonic mucosal SAM and SAH metabolites [24]. Devel-

opmentally, however, Rfc1 expression may be more critical;

homozygous mutants are embryonic lethal [32], and nursing

mice receive 5-methyTHF from their mother’s breast milk

[33]. This is noteworthy for studies involving Apcmin/+ mice,

since their intestinal cells have an age-specific sensitivity to

adenoma formation. Younger (5- to 15-day-old) mice are

more sensitive to adenoma initiation by chemical carcinogen

exposure than older mice [34]. Throughout development

and in the first few postnatal weeks, mice are dependent on

maternal sources of folate and on their own uptake

mechanisms. Consequently, a genetic defect in Rfc1

transporter might manifest itself earlier than a dietary

deficiency that is initiated on weaning. The modulation of

adenoma initiation rates could occur through several

potential mechanisms. For example, polyamines are neces-

sary for cell proliferation and can be formed from the
decarboxylation of SAM. Rfc1 heterozygosity has previ-

ously been shown to decrease the SAM/SAH ratio [24]. By

genetically depleting polyamines through increased catabo-

lism, it was shown that Apcmin/+ mice develop 75% fewer

adenomas than do wild-type mice [35]. Although we did not

observe changes in global DNA methylation in this strain,

Rfc1 heterozygosity could potentially result in methylation

changes within critical oncogenes or tumor-suppressor

genes. In addition, the pool of DNA precursors for

proliferation may have been reduced, inhibiting the DNA

synthesis of burgeoning adenomas.

A decrease in adenoma number was also found in

folate-deficient Rfc1+/�Apcmin/+ mice, compared to Rfc+/+

Apcmin/+ mice, although this was not statistically significant

when measured by t test (55.8F7.6 vs. 42.6F4.4 for +/+

vs. +/�; P=.12, independent-sample t test). The decrease

in adenoma number in Rfc1+/�Apcmin/+ mice, compared to

Rfc1+/+Apcmin/+ mice, was more striking when they were

on CD (60.4F9.4 vs. 30.3F4.6 for +/+ vs. +/�; P=.03,
independent-sample t test). It is possible that dietary

intervention after weaning ablated the decrease in ad-

enoma number resulting from Rfc1 deficiency. Low dietary

folate is an important risk factor for colorectal cancer in

human populations [3,4]; despite the fact that polymor-

phism in the folate-metabolizing enzyme MTHFR may

be protective, this decreased risk is observed only when

folate status is adequate [1]. Low dietary folate over-

comes any potential benefit from genetic variants in

human populations and may also be a risk factor under

certain conditions in these animal studies (as discussed for

Mtr mice below).

A recent study investigated the effect of Rfc1 on

azoxymethane-induced ACF formation. In this model,

certain subtypes of ACF are thought to represent colorectal

cancer precursors [36]. They showed that Rfc1 status did not

affect either the absolute number of ACF or the incidence of

adenocarcinoma in the colon [24]. However, when crypt

multiplicity was considered, they found that Rfc1+/� mice

had a higher number of ACF, with more than one crypt per

focus (larger ACF). The disparity between this finding and

our own may be attributable to the model (genetic Apc

disruption vs. chemical carcinogen) or to localization (small

intestine vs. colon). The Apcmin/+ mouse model is associated

primarily with small intestinal tumors, and tumor formation

is initiated early since the mutation is present in the

germline. The effect of Rfc1 mutation that is also present

in the germline may have consequences different from those

of dietary deficiency or carcinogen treatment administered

to older animals.

The genetic deficiency of Mtr did not elicit the same

response as that of Rfc1. Although two epidemiological

studies have suggested that individuals carrying an Mtr

polymorphism have a decreased colorectal cancer risk

[37,38], Mtr deficiency in this animal model did not affect

tumorigenesis. Mtr�/� mice are embryonically lethal, and

heterozygous mice have decreased enzyme activity and a



A.K. Lawrance et al. / Journal of Nutritional Biochemistry 18 (2007) 305–312 311
moderate increase in homocysteine in female mice [25].

There is an alternative homocysteine remethylation path-

way, catalyzed by betaine–homocysteine methyltransferase

(BHMT), which may partially compensate for Mtr defi-

ciency. BHMT is expressed in hepatic and renal tissues [39],

but BHMT products (methionine or SAM) may circulate

and offset a disturbance in the folate-dependent remethyla-

tion of homocysteine, as we suggested for Mthfr knockout

mice and for humans with hyperhomocysteinemia [40]. The

mixed genetic background of these mice is a limitation of

this study and precludes the drawing of any definitive

conclusions regarding the effect of genetic disruption of Mtr

in this model.

In Mtr+/+Apcmin/+ and Mtr+/�Apcmin/+ mice, dietary

folate deficiency significantly increased the number of

adenomas. This increase is consistent with findings in

epidemiological studies on low dietary folate in human

populations, as mentioned above [3,4]. In these mice, folate

deficiency caused a significant threefold increase in plasma

homocysteine, a decrease in DNA methylation and an

increase in intestinal cell apoptosis. Since hyperhomocys-

teinemia is known to increase SAH levels through a reversal

of the SAH hydrolase reaction and since SAH is a potent

inhibitor of SAM-dependent methylation reactions, marked

hyperhomocysteinemia may be directly responsible for

hypomethylation. In previous work, we found that tumor

number in Apcmin/+ mice was positively correlated with

levels of DNA hypomethylation [18].

The increase in apoptosis due to folate deficiency in

Mtr+/+Apcmin/+ andMtr+/�Apcmin/+ mice may also be related

to hyperhomocysteinemia. Elevated homocysteine has been

shown to increase the rates of apoptosis [41] and to induce

the hyperproliferation of colon cancer cells [42]. High levels

of apoptosis may lead to a high cell turnover, with decreased

repair time and selection pressure for cells capable of

transformation [14].

Folate deficiency results in lower levels of SAM [43],

which is required for the de novo synthesis of choline, the

precursor for betaine. Folate deficiency may produce a

secondary choline deficiency, both by inhibiting its synthe-

sis and by enhancing its depletion by activating BHMT-

catalyzed homocysteine remethylation [44]. This may

contribute to tumorigenesis since choline deficiency has

been shown to induce apoptosis and to promote carcino-

genesis [45].

In this study, we have shown that early disruption in

folate metabolism, in the form of a germline mutation in the

folate transporter Rfc1, resulted in fewer intestinal adeno-

mas in Apcmin/+ mice predisposed to forming a large number

of tumors. A later disruption in the form of dietary folate

deficiency administered on weaning resulted in an increase

in tumor number in a different strain with or without a

mutation in Mtr. These findings recapitulate the complex

relationship between folate metabolism and tumorigenesis

and highlight the utility of genetic animal models for these

types of studies.
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